kernel/alloc/kbox.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Implementation of [`Box`].
4
5#[allow(unused_imports)] // Used in doc comments.
6use super::allocator::{KVmalloc, Kmalloc, Vmalloc};
7use super::{AllocError, Allocator, Flags};
8use core::alloc::Layout;
9use core::fmt;
10use core::marker::PhantomData;
11use core::mem::ManuallyDrop;
12use core::mem::MaybeUninit;
13use core::ops::{Deref, DerefMut};
14use core::pin::Pin;
15use core::ptr::NonNull;
16use core::result::Result;
17
18use crate::init::{InPlaceInit, InPlaceWrite, Init, PinInit};
19use crate::types::ForeignOwnable;
20
21/// The kernel's [`Box`] type -- a heap allocation for a single value of type `T`.
22///
23/// This is the kernel's version of the Rust stdlib's `Box`. There are several differences,
24/// for example no `noalias` attribute is emitted and partially moving out of a `Box` is not
25/// supported. There are also several API differences, e.g. `Box` always requires an [`Allocator`]
26/// implementation to be passed as generic, page [`Flags`] when allocating memory and all functions
27/// that may allocate memory are fallible.
28///
29/// `Box` works with any of the kernel's allocators, e.g. [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`].
30/// There are aliases for `Box` with these allocators ([`KBox`], [`VBox`], [`KVBox`]).
31///
32/// When dropping a [`Box`], the value is also dropped and the heap memory is automatically freed.
33///
34/// # Examples
35///
36/// ```
37/// let b = KBox::<u64>::new(24_u64, GFP_KERNEL)?;
38///
39/// assert_eq!(*b, 24_u64);
40/// # Ok::<(), Error>(())
41/// ```
42///
43/// ```
44/// # use kernel::bindings;
45/// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1;
46/// struct Huge([u8; SIZE]);
47///
48/// assert!(KBox::<Huge>::new_uninit(GFP_KERNEL | __GFP_NOWARN).is_err());
49/// ```
50///
51/// ```
52/// # use kernel::bindings;
53/// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1;
54/// struct Huge([u8; SIZE]);
55///
56/// assert!(KVBox::<Huge>::new_uninit(GFP_KERNEL).is_ok());
57/// ```
58///
59/// # Invariants
60///
61/// `self.0` is always properly aligned and either points to memory allocated with `A` or, for
62/// zero-sized types, is a dangling, well aligned pointer.
63#[repr(transparent)]
64pub struct Box<T: ?Sized, A: Allocator>(NonNull<T>, PhantomData<A>);
65
66/// Type alias for [`Box`] with a [`Kmalloc`] allocator.
67///
68/// # Examples
69///
70/// ```
71/// let b = KBox::new(24_u64, GFP_KERNEL)?;
72///
73/// assert_eq!(*b, 24_u64);
74/// # Ok::<(), Error>(())
75/// ```
76pub type KBox<T> = Box<T, super::allocator::Kmalloc>;
77
78/// Type alias for [`Box`] with a [`Vmalloc`] allocator.
79///
80/// # Examples
81///
82/// ```
83/// let b = VBox::new(24_u64, GFP_KERNEL)?;
84///
85/// assert_eq!(*b, 24_u64);
86/// # Ok::<(), Error>(())
87/// ```
88pub type VBox<T> = Box<T, super::allocator::Vmalloc>;
89
90/// Type alias for [`Box`] with a [`KVmalloc`] allocator.
91///
92/// # Examples
93///
94/// ```
95/// let b = KVBox::new(24_u64, GFP_KERNEL)?;
96///
97/// assert_eq!(*b, 24_u64);
98/// # Ok::<(), Error>(())
99/// ```
100pub type KVBox<T> = Box<T, super::allocator::KVmalloc>;
101
102// SAFETY: `Box` is `Send` if `T` is `Send` because the `Box` owns a `T`.
103unsafe impl<T, A> Send for Box<T, A>
104where
105 T: Send + ?Sized,
106 A: Allocator,
107{
108}
109
110// SAFETY: `Box` is `Sync` if `T` is `Sync` because the `Box` owns a `T`.
111unsafe impl<T, A> Sync for Box<T, A>
112where
113 T: Sync + ?Sized,
114 A: Allocator,
115{
116}
117
118impl<T, A> Box<T, A>
119where
120 T: ?Sized,
121 A: Allocator,
122{
123 /// Creates a new `Box<T, A>` from a raw pointer.
124 ///
125 /// # Safety
126 ///
127 /// For non-ZSTs, `raw` must point at an allocation allocated with `A` that is sufficiently
128 /// aligned for and holds a valid `T`. The caller passes ownership of the allocation to the
129 /// `Box`.
130 ///
131 /// For ZSTs, `raw` must be a dangling, well aligned pointer.
132 #[inline]
133 pub const unsafe fn from_raw(raw: *mut T) -> Self {
134 // INVARIANT: Validity of `raw` is guaranteed by the safety preconditions of this function.
135 // SAFETY: By the safety preconditions of this function, `raw` is not a NULL pointer.
136 Self(unsafe { NonNull::new_unchecked(raw) }, PhantomData)
137 }
138
139 /// Consumes the `Box<T, A>` and returns a raw pointer.
140 ///
141 /// This will not run the destructor of `T` and for non-ZSTs the allocation will stay alive
142 /// indefinitely. Use [`Box::from_raw`] to recover the [`Box`], drop the value and free the
143 /// allocation, if any.
144 ///
145 /// # Examples
146 ///
147 /// ```
148 /// let x = KBox::new(24, GFP_KERNEL)?;
149 /// let ptr = KBox::into_raw(x);
150 /// // SAFETY: `ptr` comes from a previous call to `KBox::into_raw`.
151 /// let x = unsafe { KBox::from_raw(ptr) };
152 ///
153 /// assert_eq!(*x, 24);
154 /// # Ok::<(), Error>(())
155 /// ```
156 #[inline]
157 pub fn into_raw(b: Self) -> *mut T {
158 ManuallyDrop::new(b).0.as_ptr()
159 }
160
161 /// Consumes and leaks the `Box<T, A>` and returns a mutable reference.
162 ///
163 /// See [`Box::into_raw`] for more details.
164 #[inline]
165 pub fn leak<'a>(b: Self) -> &'a mut T {
166 // SAFETY: `Box::into_raw` always returns a properly aligned and dereferenceable pointer
167 // which points to an initialized instance of `T`.
168 unsafe { &mut *Box::into_raw(b) }
169 }
170}
171
172impl<T, A> Box<MaybeUninit<T>, A>
173where
174 A: Allocator,
175{
176 /// Converts a `Box<MaybeUninit<T>, A>` to a `Box<T, A>`.
177 ///
178 /// It is undefined behavior to call this function while the value inside of `b` is not yet
179 /// fully initialized.
180 ///
181 /// # Safety
182 ///
183 /// Callers must ensure that the value inside of `b` is in an initialized state.
184 pub unsafe fn assume_init(self) -> Box<T, A> {
185 let raw = Self::into_raw(self);
186
187 // SAFETY: `raw` comes from a previous call to `Box::into_raw`. By the safety requirements
188 // of this function, the value inside the `Box` is in an initialized state. Hence, it is
189 // safe to reconstruct the `Box` as `Box<T, A>`.
190 unsafe { Box::from_raw(raw.cast()) }
191 }
192
193 /// Writes the value and converts to `Box<T, A>`.
194 pub fn write(mut self, value: T) -> Box<T, A> {
195 (*self).write(value);
196
197 // SAFETY: We've just initialized `b`'s value.
198 unsafe { self.assume_init() }
199 }
200}
201
202impl<T, A> Box<T, A>
203where
204 A: Allocator,
205{
206 /// Creates a new `Box<T, A>` and initializes its contents with `x`.
207 ///
208 /// New memory is allocated with `A`. The allocation may fail, in which case an error is
209 /// returned. For ZSTs no memory is allocated.
210 pub fn new(x: T, flags: Flags) -> Result<Self, AllocError> {
211 let b = Self::new_uninit(flags)?;
212 Ok(Box::write(b, x))
213 }
214
215 /// Creates a new `Box<T, A>` with uninitialized contents.
216 ///
217 /// New memory is allocated with `A`. The allocation may fail, in which case an error is
218 /// returned. For ZSTs no memory is allocated.
219 ///
220 /// # Examples
221 ///
222 /// ```
223 /// let b = KBox::<u64>::new_uninit(GFP_KERNEL)?;
224 /// let b = KBox::write(b, 24);
225 ///
226 /// assert_eq!(*b, 24_u64);
227 /// # Ok::<(), Error>(())
228 /// ```
229 pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> {
230 let layout = Layout::new::<MaybeUninit<T>>();
231 let ptr = A::alloc(layout, flags)?;
232
233 // INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`,
234 // which is sufficient in size and alignment for storing a `T`.
235 Ok(Box(ptr.cast(), PhantomData))
236 }
237
238 /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then `x` will be
239 /// pinned in memory and can't be moved.
240 #[inline]
241 pub fn pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError>
242 where
243 A: 'static,
244 {
245 Ok(Self::new(x, flags)?.into())
246 }
247
248 /// Forgets the contents (does not run the destructor), but keeps the allocation.
249 fn forget_contents(this: Self) -> Box<MaybeUninit<T>, A> {
250 let ptr = Self::into_raw(this);
251
252 // SAFETY: `ptr` is valid, because it came from `Box::into_raw`.
253 unsafe { Box::from_raw(ptr.cast()) }
254 }
255
256 /// Drops the contents, but keeps the allocation.
257 ///
258 /// # Examples
259 ///
260 /// ```
261 /// let value = KBox::new([0; 32], GFP_KERNEL)?;
262 /// assert_eq!(*value, [0; 32]);
263 /// let value = KBox::drop_contents(value);
264 /// // Now we can re-use `value`:
265 /// let value = KBox::write(value, [1; 32]);
266 /// assert_eq!(*value, [1; 32]);
267 /// # Ok::<(), Error>(())
268 /// ```
269 pub fn drop_contents(this: Self) -> Box<MaybeUninit<T>, A> {
270 let ptr = this.0.as_ptr();
271
272 // SAFETY: `ptr` is valid, because it came from `this`. After this call we never access the
273 // value stored in `this` again.
274 unsafe { core::ptr::drop_in_place(ptr) };
275
276 Self::forget_contents(this)
277 }
278
279 /// Moves the `Box`'s value out of the `Box` and consumes the `Box`.
280 pub fn into_inner(b: Self) -> T {
281 // SAFETY: By the type invariant `&*b` is valid for `read`.
282 let value = unsafe { core::ptr::read(&*b) };
283 let _ = Self::forget_contents(b);
284 value
285 }
286}
287
288impl<T, A> From<Box<T, A>> for Pin<Box<T, A>>
289where
290 T: ?Sized,
291 A: Allocator,
292{
293 /// Converts a `Box<T, A>` into a `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
294 /// `*b` will be pinned in memory and can't be moved.
295 ///
296 /// This moves `b` into `Pin` without moving `*b` or allocating and copying any memory.
297 fn from(b: Box<T, A>) -> Self {
298 // SAFETY: The value wrapped inside a `Pin<Box<T, A>>` cannot be moved or replaced as long
299 // as `T` does not implement `Unpin`.
300 unsafe { Pin::new_unchecked(b) }
301 }
302}
303
304impl<T, A> InPlaceWrite<T> for Box<MaybeUninit<T>, A>
305where
306 A: Allocator + 'static,
307{
308 type Initialized = Box<T, A>;
309
310 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
311 let slot = self.as_mut_ptr();
312 // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
313 // slot is valid.
314 unsafe { init.__init(slot)? };
315 // SAFETY: All fields have been initialized.
316 Ok(unsafe { Box::assume_init(self) })
317 }
318
319 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
320 let slot = self.as_mut_ptr();
321 // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
322 // slot is valid and will not be moved, because we pin it later.
323 unsafe { init.__pinned_init(slot)? };
324 // SAFETY: All fields have been initialized.
325 Ok(unsafe { Box::assume_init(self) }.into())
326 }
327}
328
329impl<T, A> InPlaceInit<T> for Box<T, A>
330where
331 A: Allocator + 'static,
332{
333 type PinnedSelf = Pin<Self>;
334
335 #[inline]
336 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E>
337 where
338 E: From<AllocError>,
339 {
340 Box::<_, A>::new_uninit(flags)?.write_pin_init(init)
341 }
342
343 #[inline]
344 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
345 where
346 E: From<AllocError>,
347 {
348 Box::<_, A>::new_uninit(flags)?.write_init(init)
349 }
350}
351
352impl<T: 'static, A> ForeignOwnable for Box<T, A>
353where
354 A: Allocator,
355{
356 type Borrowed<'a> = &'a T;
357 type BorrowedMut<'a> = &'a mut T;
358
359 fn into_foreign(self) -> *mut crate::ffi::c_void {
360 Box::into_raw(self).cast()
361 }
362
363 unsafe fn from_foreign(ptr: *mut crate::ffi::c_void) -> Self {
364 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
365 // call to `Self::into_foreign`.
366 unsafe { Box::from_raw(ptr.cast()) }
367 }
368
369 unsafe fn borrow<'a>(ptr: *mut crate::ffi::c_void) -> &'a T {
370 // SAFETY: The safety requirements of this method ensure that the object remains alive and
371 // immutable for the duration of 'a.
372 unsafe { &*ptr.cast() }
373 }
374
375 unsafe fn borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> &'a mut T {
376 let ptr = ptr.cast();
377 // SAFETY: The safety requirements of this method ensure that the pointer is valid and that
378 // nothing else will access the value for the duration of 'a.
379 unsafe { &mut *ptr }
380 }
381}
382
383impl<T: 'static, A> ForeignOwnable for Pin<Box<T, A>>
384where
385 A: Allocator,
386{
387 type Borrowed<'a> = Pin<&'a T>;
388 type BorrowedMut<'a> = Pin<&'a mut T>;
389
390 fn into_foreign(self) -> *mut crate::ffi::c_void {
391 // SAFETY: We are still treating the box as pinned.
392 Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }).cast()
393 }
394
395 unsafe fn from_foreign(ptr: *mut crate::ffi::c_void) -> Self {
396 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
397 // call to `Self::into_foreign`.
398 unsafe { Pin::new_unchecked(Box::from_raw(ptr.cast())) }
399 }
400
401 unsafe fn borrow<'a>(ptr: *mut crate::ffi::c_void) -> Pin<&'a T> {
402 // SAFETY: The safety requirements for this function ensure that the object is still alive,
403 // so it is safe to dereference the raw pointer.
404 // The safety requirements of `from_foreign` also ensure that the object remains alive for
405 // the lifetime of the returned value.
406 let r = unsafe { &*ptr.cast() };
407
408 // SAFETY: This pointer originates from a `Pin<Box<T>>`.
409 unsafe { Pin::new_unchecked(r) }
410 }
411
412 unsafe fn borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> Pin<&'a mut T> {
413 let ptr = ptr.cast();
414 // SAFETY: The safety requirements for this function ensure that the object is still alive,
415 // so it is safe to dereference the raw pointer.
416 // The safety requirements of `from_foreign` also ensure that the object remains alive for
417 // the lifetime of the returned value.
418 let r = unsafe { &mut *ptr };
419
420 // SAFETY: This pointer originates from a `Pin<Box<T>>`.
421 unsafe { Pin::new_unchecked(r) }
422 }
423}
424
425impl<T, A> Deref for Box<T, A>
426where
427 T: ?Sized,
428 A: Allocator,
429{
430 type Target = T;
431
432 fn deref(&self) -> &T {
433 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized
434 // instance of `T`.
435 unsafe { self.0.as_ref() }
436 }
437}
438
439impl<T, A> DerefMut for Box<T, A>
440where
441 T: ?Sized,
442 A: Allocator,
443{
444 fn deref_mut(&mut self) -> &mut T {
445 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized
446 // instance of `T`.
447 unsafe { self.0.as_mut() }
448 }
449}
450
451impl<T, A> fmt::Display for Box<T, A>
452where
453 T: ?Sized + fmt::Display,
454 A: Allocator,
455{
456 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
457 <T as fmt::Display>::fmt(&**self, f)
458 }
459}
460
461impl<T, A> fmt::Debug for Box<T, A>
462where
463 T: ?Sized + fmt::Debug,
464 A: Allocator,
465{
466 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
467 <T as fmt::Debug>::fmt(&**self, f)
468 }
469}
470
471impl<T, A> Drop for Box<T, A>
472where
473 T: ?Sized,
474 A: Allocator,
475{
476 fn drop(&mut self) {
477 let layout = Layout::for_value::<T>(self);
478
479 // SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant.
480 unsafe { core::ptr::drop_in_place::<T>(self.deref_mut()) };
481
482 // SAFETY:
483 // - `self.0` was previously allocated with `A`.
484 // - `layout` is equal to the `Layout´ `self.0` was allocated with.
485 unsafe { A::free(self.0.cast(), layout) };
486 }
487}